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Abstract

We present an algorithm for detecting a specified set

of targets for an Automatic Target Recognition

(ATR) application. ATR involves processing

images for detecting, classifying, and tracking targets
embedded in a background scene. We address the

problem of discriminating between targets and non-

target objects in a scene by evaluating 40x40 image
blocks belonging to an image. Each image block is

first projected onto a set of templates specifically

designed to separate images of targets embedded in a

typical background scene from those background

images without targets. These filters are found using
directed principal component analysis which

maximally separates the two groups. The projected
images are then clustered into one of n classes based

on a minimum distance to a set of n cluster

prototypes. These cluster prototypes have previously

been identified using a modified clustering algorithm

based on prior sensed data. Each projected image
pattern is then fed into the associated cluster's

trained neural network for classification.

A detailed description of our algorithm will be given

in this paper. We outline our methodology for
designing the templates, describe our modified

clustering algorithm, and provide details on the
neural network classifiers. Evaluation of the overall

algorithm demonstrates that our detection rates

approach 96% with a false positive rate of less than
0.03%.

1. Introduction

There has been much work involved in the process
of automatic target recognition (ATR). This process
involves automatic detection, classification, and

tracking of a target located, or camouflaged, in an

image scene. The typical procedure utilized for

recognition involves a three-stage process
segmentation, feature extraction, and classification.

The segmentation process is useful for dividing the
image space into separate regions of interest. The

feature extraction process allows the ATR system to
identify and classify targets based on relevant

features and the classification process involves

detecting and consequently identifying the target in
question.

An ATR system must be invariant toward vantage

points. This includes illumination changes,
shadowing, perspective distortion, and occlusion. In

Aerial ATR applications, the input image is typically
an on-line aerial image acquired by digital camera.

Such real world imagery is affected by climate,

season, weather, and time of day. An aerial image is

also subject to geometric changes, such as position,

orientation, and scale variations. There are many

other problems which face ATR systems. Normally,
the target recognition process is highly data

dependent. Most systems are only capable of

recognizing a pre-specified number of targets and
are unable to expand their object database. In

addition, many ATR systems are encoded with

predetermined tolerances resulting in a tendency to
be very sensitive to scale and orientation changes.

MODALS [I 1], a 3-D multiple object detection and
location system, utilizes a neural network to

simultaneously segment, detect, locate, and identify
multiple targets. Although MODALS is able to

provide robust detection, high classification, and a
low false alarm rate, it is not rotation or scale

invariant. SAHTIRN [1] performs automatic target

recognition through a three-stage process using an

edge detector, a multi-layer feedfoward clustering
neural network and a neural network classifier.

SAHTIRN is able to successfully classify objects
with varying scale and orientation parameters, but is

not robust when faced with changes in lighting
conditions. Greenberg and Guterman[5] use neural

networks to address the issue of target classification,

but assume the ATR-detection process has
previously executed and has already identified
targeted regions of interest.

Our research objective is to develop a novel
technique which autonomously detects, in real time,

all target objects embedded in a background image

scene. The evaluation of these algorithms is based
on inserting target images into real scenes acquired



from video input. In real time, we will reduce the

data dimensionality of a scene using an optimal set
of templates and spatially locate targets in the scene
with a neural network classifier. Figure 1 provides
an overview of our approach for detecting a knog;n
set of targets in a background image. The rest of this
paper describes the methodology used to investigate
autonomous target detection in detail.

Figure 1: The data processing path for each 40x40 image

block extracted from the acquired video Input. The image

block is projected onto a set of filters, associated with a

particular cluster, and then classified with the associated
neural network.

2. Technique

A. Background and Target Data Set

The background image scenes used in this research
effort are acquired from video camera from the JPL
in Pasadena site. We segment these background
images into 40x40 image blocks for input into our
algorithm (Fig. 2:Top). Target objects (Fig.
2:Middle) are modeled from an actual cruise missle

and represent various scale and rotation perspectives
of the missle. These synthetic target objects are used
for training the algorithm and are embedded into the
background image such that:
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where t_y is the pixel intensity value of the target
image at (x,y), b_y is the pixel value of the
background image at (x,y), and Ir is the embedded

target-background image block. Example embedded

target-background images are shown in Figure
2:Bottom.

Once we extract our background and embedded

target data set, we perform a preprocessing step in
order to account for time-of-day lighting variations
in the image set. We subtract the average image
block intensity value from each pixel such that:

_i_,
I_=I

N

where ixy is the image intensity of pixel (x,y) in
image block I, N is the size of image block I
(40x40), and I¢ is the corrected image block to be
used in our algorithm.

Using this data set, we can train an algorithm
capable of intelligently detecting a target embedded
within a background image scene. The next section
describes our approach for the development of such
an algorithm.

Figure 2. Top Row: Background Images; Middle

Row: Target Objects; Bottom Row: Background

Images with Embedded Targets

B. Algorithm Description

Given a set of targets T, the goal of the algorithm is
to detect in real time, any target t _ T present in a 40
x40 image block extracted from a background scene.
After the data preprocessing step, we begin by
projecting an image block onto a set of templates
specifically designed to separate signatures derived
from a target embedded in a background image from
other typical background images. These projections,
or patterns, are then clustered into one of n classes
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based on their distance to a set of n cluster

prototypes. These cluster prototypes have previously
been identified using a modified clustering algorithm
based on prior sensed data. Associated with each
cluster is a trained neural network classifier. After

clustering, the projected image pattern is fed through
this associated trained neural network for detection,

In order to accomplish our target detection goal,
prior knowledge must be derived through the

following algorithmic preprocessing steps:

11.

iii.

Derive a set of linear filters used to

optimally separate targets embedded in a

background image from other background
images.

Identify a set of cluster prototypes used to

classify the projected image patterns.
Train a set of expert neural network

classifiers for each cluster which responds

with I when fed embedded target-
background image patterns and -1
otherwise.

i. Linear Filter Sets

The filtering step involves an orthogonal sub-space

projection of each image block. It is used to

optimally linearly separate the embedded target

background images from those images without

targets. This is a standard technique used to reduce
the dimensionality of the image block [from 1600

(40x40) to 17 dimensions] while preserving as much

of the signal as possible. The filters associated with a

given prototype are derived from the distribution of

a background image (noise) and the distribution of

potential targets embedded in that background

(signal). This can be optimally separated to
maximize the signal to noise ratio between the two

groups using directed principal components analysis
(DPCA). To characterize the distribution for the

background image, the covariance matrix, Ri, is

found for image blocks which do not contain targets.

We characterize the mixed target-background image
distribution instances by its covadance matrix, Si.

We are interested in finding a set of orthogonal basis

vectors Wi, that maximizes the expected signal to

noise ratio of these two distributions defined by their
respective image sets. The generalized eigenvector
solution:

Si Wi = _, Ri Wi

accomplishes this. The set of filters defined by Wi is

the directed components used in our algorithm. They
essentially steer the eigenvector solution away from

dimensions of high noise variance in a linearly
optimal fashion. Figure 3 shows a subset of the
linear filter set.

Figure 3. Top 15 directed principle components

ii. Clustering

To effectively simplify the distribution of data

classified by an expert neural network, we partition

the incoming projected image patterns drawn from a

known distribution of background and embedded
target-background images into a number of

predetermined groups by using the prototypes Pi of a
clustering algorithm. The clustering algorithm is run

on previously acquired data that reflects the

distribution of the scene being analyzed.

The clustering algorithm employed is a modified

version of a standard clustering technique outlined in
Duda and Hart [3]. The standard algorithm uses a
standard least squares criterion to minimize the

distance between each of n randomly selected
groups. The criterion minimized by the standard

clustering algorithm is:

(!) cost = Ei_.j IIPj - Pi II

where i is one of n clusters and pj is a projected
image pattern in that cluster. The clustering

algorithm iterates through each projected image

pattern and determines if moving the pattern to
another group reduces the overall cost. If it does, the

pattern is moved to the other group and the
associated averages of each prototype cluster are

recalculated. This continues until the moving of
patterns no longer reduces the overall cost. The



resultantclusterprototypes are then employed by our
algorithm to segment the scene.

As n increases, the overall cost is likely to go down

as a larger number of groups allow the clustenng
algorithm to better fit the given distribution.

Secondly, the clustering algorithm, as described, is

independent of the variation in the clustering set. It

does not take into account any information that we

might have concerning the patterns already

belonging to the cluster. What we need is a way to

penalize a cluster when adding a pattern that is

different than the majority of patterns already in the

cluster. This, in effect, will allow the clustering

algorithm to more likely group embedded target-
background patterns together while still discarding

those background patterns which may have similar

characteristics. To accomplish this, we modified the

criterion given in (1) to reflect this knowledge. The

change in (1) consists of simply weighting the initial
criterion by a term reflecting variance. The modified

criterion is given by:

(2) cost = Y.i (l+wi) Ejll pj - Pi II

where

nt, (1 nti )W _---

nP i nP i

nti is the number of embedded target patterns in

cluster i, and npi is the number of background
patterns in cluster i. Patterns that are not like those

already in the cluster will be weighied more in the
cost of the clustering algorithm than those alike thus

allowing the clustering algorithm to naturally link

Figure 4. A Segmented Background Image Scene

alike elements together. Figure 4 shows a

background scene segmented with the derived
clustering prototypes.

ii|. Classification

The last step in our preprocessing algorithm involves

classifying each projected image pattern belonging
to cluster_ with a neural network [6]. The networks

are trained with data drawn from the two

distributions: background patterns R_ and embedded

target-background patterns S_. The expert network
for class t is required to respond with 1 for elements

drawn from S_ and -1 from those drawn from R_. We

use a simple feed forward network model employing
17 inputs and 10 sigmoidal hidden units trained with

backpropogation to get the desired result. The output
can then be thresholded to achieve the desired

detection rate or false positive rate by examining the
receiver operator curves.

C. Algorithm Implementation

After we implement the preprocessing steps, we can
perform real-time intelligent target detection• After

subtracting out the mean, each image block is

projected onto a linear filter set. This projected
image pattern is then compared to the set of pre-

computed cluster prototypes. Based on the Euclidean
distance, the pattern is grouped with the closest

prototype.

We then use the trained neural network classifier to

evaluate whether or not the image pattern contains a
target from T. The neural network for each cluster

group takes as input the projected values of the
image and outputs a value. Values above a threshold

are considered images with targets and those below
are assigned to background.

The effectiveness of the evaluation requires that the

cluster prototypes generated and the image blocks
used in training the classifier must be derived from

scenery with roughly the same distributions as

encountered in the operational test. The following
pseudo code outlines the important features of the
algorithm.

Let I_r be an image block with a centroid located at
(x,y) in the scene:

for all x,y-

1. l_y -->/'W

2. /¢W --> p_y

3. for rain( IIpxy - Pi II)

4. if N, (p,y) < thri then target(x,y)

otherwise background(x,y)

where I_ is the mean corrected image block, W is the

linear filter set, p_y is the projected image block, Pi is

4
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the closest cluster prototype, Ni is the neural

network classifier associated with cluster i, and thri

is the threshold value discriminating between images
with targets and those without.

3. Results

We evaluated the overall performance of the

algorithm using the described target set and
background images.

The background scenes consisted of over one million
image blocks of which less than 5% were used in

developing a set of training data. Testing data

consisted of randomly drawn image blocks from the
background scenes. Embedded target images were

generated by randomly selecting images from the

target set and mixing them with arbitrary background
image blocks. A sub-sample of the training data

(1000 examples each) was used to generate the

covariance matrixes R and S. The generalized

eigenvector solution W was then solved using

Matlab. The training data was then projected onto

the filter set and evaluated with the clustering

technique to realize the cluster prototypes (P) used
in step i of the algorithm.

Training data for the neural network was again

drawn from the set of training image blocks. In

addition, a portion of the training data for the

network was used to halt training (a hold out set) as

described in Haykin [6]. Training of the networks

used 80,000 examples, ½ target and ½ background
images. The hold out set consisted of 40,000

examples not trained upon. It is used to stop training
in order to prevent over learning on the training data
which tends to decrease generalization.
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Figure 5: Detection vs False Positive Rate

Figure 6: Detection Output

Our results give us a detection rate of 96% with a

false positive rate of less than 0.03%. These results

are constructed with 100,000 novel 40x40 image
blocks. Figure 5 shows our Receiver Operator Curve

(showing Detection vs. False Positive Rate) and

Figure 6 shows an example of the detection output.

4. Conclusion

A novel detection algorithm and our evaluation

methodology are described here. The detection

algorithm was shown to perform detection at a rate

of 96% with false positives less than 0.03% on a set

of targets mixed with background images.
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